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Abstract We use the techniques of time series net-
work duality to map the time series of the logistic map,
at several special parameter values, to equivalent net-
works utilizing the visibility algorithm. We discuss a
set of measures which can analyse the simplicial struc-
ture of the resulting networks using the techniques of
algebraic topology. We find that the complexity of the
simplicial structure and the levels of hierarchy involved
increase with the chaoticity of the system. We discuss
the implications of our results.

1 Introduction

The analysis of the time series of the variables of
evolving dynamical systems is an important tool for an-
alyzing the dynamical behavior of nonlinear dynamical
systems, as well as for making predictions for their be-
havior. A variety of well developed methods and tools
are used to carry out this kind of analysis, which also
define a set of precise metrics such as the Fourier trans-
form, correlation dimensions and entropy, and Lya-
punov exponents [Kantz and Schreiber, 2004]

It has recently been realized, that the network repre-
sentation of time series offers additional ways of ex-
tracting the dynamical information of the system us-
ing a variety of metrics developed and tested for net-
works over the recent decades [Zhang and Small, 2006;
Yang and Yang, 2008; Marwan, et. al, 2009]. Some
of the recent methods used for mapping time series to
graphs include the use of visibility graphs [Lacasa and
Luque, 2008], and the quantile mapping [Campanharo,
et. al, 2011]. The resulting networks have been an-
alyzed using conventional network measures such as
clustering coefficients and path lengths. In this pa-
per we analyze the time series networks (TS networks)
obtained from the time series obtained from the lo-
gistic map at different parameter values, using meth-
ods of algebraic topology [Atkin, 1972; Duckstein and
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Nobe, 1997; Kramer and Laubenbacher, 1998] and re-
cently constructed measures which analyze the simpli-
cial structure of graphs. We show that the methods are
able to identify the crucial differences between the time
series corresponding to distinct dynamical behaviors.

This paper is organized as follows. We use the time
series data from the Logistic map at parameter values
that show characteristic periodic as well as characteris-
tic chaotic behaviour. (See Fig. 1). To map these time
series data sets into their corresponding network repre-
sentations we employ the visibility algorithm [Lacasa
and Luque, 2008] in Section 2. We define the measures
used to analyze the simplicial structures of the resulting
graphs, and their connection with the topological struc-
ture and topological connectivity in Section 3. The re-
sults of the analysis are also tabulated in this section.
We discuss the results, and the inferences drawn from
these results in Section 4 and summarize and conclude
in Section 5.

2 Visibility Graph

In this paper, we use the visibility algorithm devel-
oped by [Lacasa and Luque, 2008] to transform a time
series (in this case, the time series obtained from the
logistic map), into a network. Recent developments
show that going from the time series representation to
the network representation yields additional informa-
tion of the underlying dynamics[Luque, et. al, 2011;
Campanharo, et. al, 2011]. While there are a num-
ber of methods developed over recent years to convert
a time series into a network [Zhang and Small, 2006;
Yang and Yang, 2008; Campanharo, et. al, 2011], we
use the visibility algorithm here, for the following rea-
sons: i) the simplicity of the visibility approach, ii) the
TS network resulting from the visibility algorithm con-
serves the structure of the time series, viz., a periodic
time series gives rise to regular graphs, a random time
series gives rise to random graphs, and a fractal time se-
ries gives rise to scale-free graphs [Lacasa and Luque,
2008].
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Figure 1. The bifurcation diagram of the logistic map used in our study with the four points identified with dark vertical lines at ;t =

3.45,3.56995, 3.82843, and 4.0.

The visibility algorithm introduced in [Lacasa and
Luque, 2008] is implemented as follows. Let the pair
of points (y;, t;) denote the data in the time series for
r =1,2,...N. For any two pairs (y;,t;) and (y;,t;)
to be visible to each other (line of sight visibility), all
other intermediate data pairs (y,, ¢,.) should satisfy this
condition:

Yi — Yi
tj —1;

Yi > yr + (t; —tr) (D

In this paper, our system of interest is the logistic map
defined by x,,41 = px, (1 — z,,), where the nonlinear-
ity is introduced in the map by the parameter 1 € [0, 4],
and x,, € [0,1]. The time series of the logistic map
shows periodic behaviour for 4 = 3.5, and chaotic be-
haviour for i = 4.0, as shown in the top panels of Figs.
2 and 3, respectively. We employ the visibility algo-
rithm to convert these time series into their correspond-
ing network representations. The network representa-
tion of the periodic time series shows repetitive motifs
(Fig. 2), and the corresponding network for the chaotic
time series shows an irregular topology (Fig. 3). Sim-
ilar network representations of the time series can be
seen in [Luque, et. al, 2011], but have not been further
analyzed by quantitative methods. In the next section
we analyze the network representations obtained from
the time series at various values of i using the meth-
ods of algebraic topology. Since the dynamical sys-
tem which contributes the time series is very well un-
derstood, the TS networks studied here constitute good
test beds for analyzing the effectiveness of the algebraic
topology methods.

3 The simplicial analysis of the TS networks

In this section, we study the topological structural
properties of the networks generated by the visibility
algorithm. The connectivity and topological properties
of the network graphs reflect the connections between
the dynamical states of the system in time [Maleti¢ and
Rajkovié, 2012; Kramer and Laubenbacher, 1998]. The
networks so obtained are further classified using the
concepts of cliques and simplices [Bron and Kerbosch,
1973; Andjelkovic, et. al, 2014].

A graph or a network represents interacting nodes in-
terconnected by the links/edges. We consider here the
simplicial complexes of graphs. A simplex with ¢ + 1
nodes or vertices is a g-dimensional simplex. For in-
stance, a 0-simplex is an isolated point, a 1-simplex is
two vertices connected by a line segment, a 2-simplex
is a triangle of three connected nodes, 3-simplex is a
tetrahedron with 4 connected nodes, and so on. Fur-
ther, if two simplices have ¢+ 1 nodes in common, they
share a g-face. A collection of simplices — not just the
nodes, but their shared faces as well — forms a simpli-
cial complex. The dimension of the simplicial complex
is defined as the dimension of the largest simplex in the
structure. If we can find a sequence of simplices such
that each successive pair share a g-face, then all the
simplices in this sequence are said to be g-connected.
Simplices which are g-connected are also connected at
all lower levels.

In this study, we consider a simplicial complex where
the simplices are cliques. A clique is a maximal com-
plete subgraph — the nodes of a clique are not part of a
larger complete subgraph. Using the adjacency matrix
of the network, we employ the Bron-Kerbosch algo-
rithm [Bron and Kerbosch, 1973] to find the cliques.
In our study, we carry out the structural and connec-
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Figure 2. A periodic time series (top panel) obtained from the lo-
gistic map at {4 = 3.5 is mapped to a network using visibility algo-

rithm that shows repetition of motifs periodically (bottom panel).

tivity analysis of the TS networks obtained from the
logistic map time series, using six topological charac-
terizers defined as follows [Kramer and Laubenbacher,
1998; Atkin, 1972; Duckstein and Nobe, 1997; Maleti¢
and Rajkovi¢, 2012]. The first characterizer is the vec-
tor Q, known as the first structure vector, which is
a measure of the connectivity of the clique complex
at various levels. The gth component of the Q =
{Q0,Q1, .. Qgmaz} is the number of g— connected
components at the ¢ — th level. The next vector quan-
tity, which we denote by f, is defined to have the num-
ber of ¢g-dimensional simplices as its g-th component.
The third quantity Ng = {ng, 71, ..., Ngmasz |, known
as the second structure vector, has the number of sim-
plices of dimension ¢ and higher as its gth component.
The third structure vector, Q, is defined in terms of the
previously defined structure vectors QQ and N. Its g-th
component, @q is given by (1 - %) A fifth quan-
tity dim @, is a local quantity, which defines the topo-
logical dimension of node 7 of the simplicial complex,
given by

dmax

dim Q' =" Qi )
q=0

where ¢na.x 1S the dimension of the simplicial com-
plex, and @, is the number of different simplices of

Figure 3. A chaotic time series (top panel) obtained from the logis-
tic map at (4 = 4.0 and its network realization (bottom panel). This
network show distinct features that are different from the network
generated using periodic time series in Fig.2.

dimension k in which the node 7 participates.
Finally, the topological entropy S is defined as

AT

Sq(q) = Tog N
q

3)

Here, pfl = Qé /> Qfl is the probability of a par-
ticular node ¢ participating in a g-simplex, and N, =
> (1 — 5Q;,0) denotes the number of nodes that par-

ticipate in at least one g-simplex. We illustrate the cal-
culation of these quantities for a simple example here.

3.1 Example:

Let us take the simplicial complex in Fig. 4 (ii) where
two triangular simplices have two vertices in common,
to illustrate how the six characterizers are calculated.

The simplicial complex consists of two simplices A =

{1,2,4} and B = {2, 3,4}, with the vertices labelled
as shown. The incidence matrix is given by

1101
A‘(0111>



p=3.45 u = 3.56995 = 3.82843 w=4.0
gleedl Q@ N, Q Q N, Q Q@ N, Q Q N Q
0 1 1499  0.999 1 1988 0.999 1 1333 0.999 1 1984 0.999
1 501 1499  0.665 12 1988 0.993 667 1333 0.499 18 1984 0.990
2 1498 1498 0 1987 1987 0 1332 1332 0 1981 1981 0
Table 1. Three structure vectors evaluated for the TS networks of the Logistic map at four parameter values. The time series considered is of

length 2000 therefore, the number of nodes/vertices of the TS networks is also N = 2000.

o= 3.45 1 = 3.56995 1= 3.82843 p=4.0
q-level S f S f S f S f
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 095915 3

2 097745 1498 0.95455 1987 0.98852 1332 0.95506 1981

Table 2.

Both the simplices A and B are of dimension 2.
Therefore, the first structure vector @ has three
components. Recall that if two simplices are to
be g-connected, they should have at least ¢ + 1
nodes in common, and also that if two simplices are
g-connected, they are also connected at all lower

)

Figure 4. [Illustrations to demonstrate connectivity between sim-
plices in a simplicial complex: i) Two simplices A of dimension
q = 2 and B of dimension ¢ = 1 are O—connected, which means
that they have a single vertex in common. ii) In contrast, here two
simplices A and B both of dimension ¢ = 2 are 1—connected,
meaning that have two vertices in common. We use this example to

illustrate the calculation of all the six characterizers in the main text.

The structure vector and the entropy evaluated for the TS networks ([N = 2000) for four parameter values of the logistic map.

topological levels. Here, simplices A and B have two
nodes in common, namely, node-2 and node-4. So they
are 1-connected and are also 0-connected. Because
the two simplices are connected at both the levels
g = 0 and ¢ = 1, the simplicial complex at these two
levels therefore form a single entity. As a result, the
corresponding components of the first structure vector
Qare Qp = 1 and Q; = 1. The simplices A and B
are, however, not connected at the ¢ = 2 level, because
they do not have three nodes in common. So the
simplicial complex has 2 seperate entities at this level,
and the corresponding component of Q is Q2 = 2.
Thereby, we can write the full vector as Q = (1,1, 2).

The simplicial complex does not have a 0-dimensional
or a 1-dimensional simplex. Both simplices A and
B are of dimension 2. Thus, the vector f, whose qth
component is the number of simplices of dimension g,
isf =(0,0,2).

The gth component of the second structure vector Ng
is the number of simplices of dimension ¢ and higher.
This means that it is an inverse cumulative counting
giving, in this case, the first and the second components
the same value as that of the last component, thereby
the vector is Ng = (2,2, 2).

The gth component of the third structure vector
Q, is given by 1 — Q,/n,, where Q, and n, are
the gth components of the first and second structure
vectors, respectively. So we can get Q = (1/2,1/2,0).

To find the topological dimension of node i, we need
to find its Q? vector, whose gth component is the num-
ber of g-dimensional simplices the node 7 participates
in. Nodes 1 and 3 are part of only one simplex, while



nodes 2 and 4 participate in both simplices. So we get
Q! = (0,0,1), Q* = (0,0,1), Q% = (0,0,2), and
Q* = (0,0,2). The topological dimension of a node
is just the sum of the components of its Q° vector,
that is, the total number of simplices it participates
in. Sodim@Q!' = 1, dim @3 = 1, dimQ? = 2, and
dim Q* = 2.

Thus, the maximum topological dimension of the
simplicial complex is max(dim) Q° = 2.

To find the entropy of each topology level, we need to
first find the occupation probability of each level, which
is given by

i 9
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where the subscript denotes the topology level and the

superscript is the node index. Computing this for each

topology level, we get p§ = 0 and pi = 0 for all the

four nodes. Now, p} = 1/6, p3 = 1/6, p3 = 1/3, and
4 _

py=1/3.

Using these, we can compute the entropy for each
topology level ¢, given by

X pylogpy

5Q () = log N,
q

where N, = >, (1 — 6Qg,0) gives the number of
nodes which participate in at least one ¢-simplex.
Clearly, Sg(0) = 0 and Sg(1) = 0. Now,

. .
> iz1P5log ph

= 0.9591
log 4 0.959

Sq(2) = —

Therefore, the entropy vector is S = (0,0,0.9591).
The quantities defined here can now be computed for
the actual TS networks in a similar way.

4 Results and Discussion for the logistic map time
series

We calculated the above six quantities for the net-
works obtained using the time series data (N = 2000)
of the logistic map at four parameter values: p = 3.45
(period-4 behaviour), ;1 = 3.56995 (Feigenbaum point,
edge of chaos), u = 3.82843 (period-3 window), and
1 = 4.0 (fully chaotic state). As mentioned above the
time series data is transformed to the network using the
visibility algorithm, and the clique structure of the re-
sulting network is extracted using the Bron-Kerbosch
algorithm. The results of the analysis are presented in
Tables 1 and 2.

There are two central aspects of the networks quanti-
fied by the above six topological quantities: topolog-
ical structure and topological connectivity. Of these,
the topological structure of the simplicial complex is
clearly identified by the f vector. The f vector counts
the number of simplices at each topological level ¢ =
0,1 and 2. We see that almost all the simplices are at
the highest topological level, ¢ = 2. At the parameter
values where the logistic map is chaotic (1 = 3.56995
and p = 4.0, respectively), we see that f has a larger
number of simplices (1987, and 1981) in comparison
to the number of simplices (1498, and 1332) seen for
the periodic states(u = 3.45 , and p = 3.82843, re-
spectively) (cf. Table 2).

Next, from Q we can find the topological connectivity
between the simplices at each topology level. The vec-
tor Q measures the number of connected components
of the network at each topology level — for ¢ = 0 (at
least one vertex in common), ¢ = 1 (at least two ver-
tices in common) and ¢ = 2 (at least three vertices in
common). We observe that at the lowest topology level
(g = 0) the components of Q have a value of 1 con-
firming that there is no isolated node, for any of the pa-
rameter values, either periodic or chaotic. However, at
q = 1 we see that the chaotic states have fewer simpli-
cial components(@) = 12, 18), in other words, are more
connected, than the corresponding periodic states that
show a higher number () = 501, 667) of disconnected
simplicial components. From the number of simplicial
components of Q seen at the higher topological level of
q = 2, that is ()2, we can infer that the chaotic param-
eter values yield higher-dimensional simplices which
are more connected in comparison to the periodic pa-
rameter values.

The quantity max(dim) Q° gives the maximum value
of the topological dimension of all the nodes in the net-
work. We see a clear distinction between the periodic
states and the chaotic states in this case. For the peri-
odic states, the node in the network which participates
in the most number of simplices, participates in very
few simplices, the values being 4 and 3. However, for
the chaotic states there is at least one node which par-
ticipates in as many as 19 and 25 simplices (cf. Ta-
ble 3). It is also clear that the entropies of the chaotic
states are lower than those of the periodic states, yield-
ing the information that the networks representing the
chaotic states are more connected than the networks
corresponding to the periodic states. The other vectors
N, @ that are derived from the vectors f and Q, give
much the same information, and are consistent with the
information yielded by the other quantities.

5 Conclusion

To summarise, we examine the TS networks obtained
from the time series of the logistic map using algebraic
topology methods. Our characterisers are clearly able
to distinguish between chaotic and periodic regimes.
Both regimes contain graphs whose simplicial struc-



L max(dim) Q*

3.45000 4
3.56995 19
3.82843 3
4.00000 25

Table 3. The table shows the maximum value of the topological
dimension of all the nodes in the TS networks (N = 2000) at the
four parameter values of the logistic map.

ture contain nodes, links and triangular faces, and also
contain fully connected clique complexes. No higher
structures are found, indicating that the connections
between the dynamical states probe short scales. The
periodic regimes are characterised by regular graphs
and fewer simplicial structures of dimensions one and
two. In contrast, the simplicial structures in the chaotic
regimes, contain many more connections at levels one
and two. The entropies are higher for the periodic
cases, and are significantly lower for the chaotic cases,
indicating that the chaotic regimes have higher com-
plexity.

We note that the local quantities pick up the differ-
ences in the two cases most sharply, especially the
maximum dimension which counts the number of sim-
plices in which the most highly connected node partic-
ipates. The utility of the algebraic topological quan-
tifiers is thus demonstrated in a simple context where
the dynamical behaviour is well understood. Hence,
they look like promising candidates for revealing the
hidden geometry of networks which represent time
series with nontrivial correlations between dynamical
states. We expect them to be particularly useful in sit-
uations which exhibit phase transitions or other radical
changes, such as crisis, intermittency and unstable di-
mension variability. We hope our study will motivate
future work in these directions.
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