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ABSTRACT

We analyze the time series obtained from di�erent dynamical regimes of evolving maps and �ows by constructing their equivalent time series
networks, using the visibility algorithm. The regimes analyzed include periodic, chaotic, and hyperchaotic regimes, as well as intermittent
regimes and regimes at the edge of chaos. We use the methods of algebraic topology, in particular, simplicial complexes, to de�ne simplicial
characterizers, which can analyze the simplicial structure of the networks at both the global and local levels. The simplicial characterizers
bring out the hierarchical levels of complexity at various topological levels. These hierarchical levels of complexity �nd the skeleton of the
local dynamics embedded in the network, which in�uence the global dynamical properties of the system and also permit the identi�cation of
dominant motifs. We also analyze the same networks using conventional network characterizers such as average path lengths and clustering
coe�cients. We see that the simplicial characterizers are capable of distinguishing between di�erent dynamical regimes and can pick up subtle
di�erences in dynamical behavior, whereas the usual characterizers provide a coarser characterization. However, the two taken in conjunction
can provide information about the dynamical behavior of the time series, as well as the correlations in the evolving system. Our methods can,
therefore, provide powerful tools for the analysis of dynamical systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5100362

Weuse themethods of algebraic topology, viz., the construction of
simplicial characterizers to analyze the hidden geometry of time
series (TS) networks. These TS networks are constructed using
the visibility algorithm from time series corresponding to dis-
tinct dynamical regimes of a variety of dynamical systems, such
as the logistic, Hénon, and generalized Lozi maps, and the Lorenz
attractor. The TS networks are constructed using the visibility
algorithm, and the dynamical regimes analyzed include periodic,
intermittent, chaotic, and hyperchaotic behavior, as well as the
Feigenbaum attractor, which typi�es the regime at the edge of
chaos. The TS network graphs are seen to contain the signature of
each dynamical regime, as well as that of the short term correla-
tions in the evolution of the system. The simplicial characterizers
uncover the hidden geometry of these graphs, level by simpli-
cial level, by providing a precise quanti�cation of the manner

in which these graphs are connected, pointwise, linkwise, trian-
glewise, and higher. Our analysis shows that the simplicial char-
acterizers are capable of distinguishing clearly between di�erent
dynamical regimes and can pick up subtle di�erences in dynami-
cal behavior. A local simplicial quantity, the max(dim)Qi, which
is the number of simplices in which the most connected node
participates, can serve as a single characterizer of the dynami-
cal complexity of the time series and shows clearly di�erentiated
values for periodic, chaotic, and hyperchaotic regimes. Addition-
ally, our characterizers provide a detailed, level by level analysis of
the short term correlations in the system and analyze the network
structure inmuch greater detail than the usual network character-
izers such as average path lengths or clustering coe�cients. Our
methods, therefore, provide a set of new and powerful tools for
the analysis of dynamical systems.
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I. INTRODUCTION

The analysis of the time series of the variables of evolving
dynamical systems is an important tool for analyzing the dynami-
cal behavior of nonlinear dynamical systems, as well as for making
predictions for their behavior. A variety of well developed methods
and tools are used to carry out this kind of analysis, which also de�ne
a set of precise metrics such as the Fourier transforms, power spec-
tra, generalized dimensions and entropies, multifractal spectra, and
Lyapunov exponents.1

In recent years, traditional techniques for the analysis of time
series have been supplemented by new approaches, which draw
on areas such as nonlinear time series analysis,2 data mining, and
complex networks.3 These approaches complement the traditional
techniques and provide important additional insights into the behav-
ior of evolving dynamical systems. An important recent method of
analyzing time series consists of mapping these time series to net-
works, which are then called time series (TS) networks. A number
of methods are available for carrying out this mapping. These
include constructing networks from pseudoperiodic time series,4

the use of visibility graphs,5 the quantile mapping,6 recurrence time
networks,7–9 etc. These network representations are then analyzed
using a variety of well known network metrics such as clustering
coe�cients, degree distributions, and path lengths.10,11

In this paper, we analyze the time series networks (TS net-
works) obtained from distinct dynamical regimes of evolving maps
and �ows, usingmethods of algebraic topology,12–14 and recently con-
structedmeasures, which analyze the simplicial structure of graphs.15

The TS networks are constructed from the time series by using the
visibility algorithm,5 which has certain advantages over other meth-
ods. The graphs so constructed are then analyzed using the simplicial
characterizers, which reveal the hierarchical levels of complexity hid-
den in the TS network, which arise due to the correlations of the
original time series.

We show that the methods are able to identify the crucial dif-
ferences between the time series corresponding to distinct dynam-
ical behaviors. We analyze the networks using the usual network
characterizers and demonstrate that the simplicial characterizers,
which include both global and local quantities, provide a more sen-
sitive and accurate diagnosis of the dynamical characteristics of the
underlying time series. While the conventional network charactiz-
ers give us the global structural information of the network, the
local dynamical information is embedded in the simplical complexes
and their interconnections at various topological levels. In essence,
this formalism uncovers the hidden skeleton of the dynamics of the
systems.

We have used multiple metrics that characterize not only the
global properties related to the network structure, but also identify
the hidden skeleton in the form of hierarchical levels of complexity
that expose the underlying dynamics and the short term correla-
tions of the system. We use the logistic map, the Hénon map, the
generalized Lozi map, and the Lorenz system as test beds, as their
dynamics is well understood and has been characterized using a vari-
ety of conventional quantities such as Lyapunov exponents, entropies,
etc. We compare the information extracted from our topological
characterizers with that obtained from these quantities and identify
elements that can be generalized to other cases. We note that the use

of characterizers from algebraic topology is slowly �nding acceptance
in the analysis of complex systems. These include the use of persistent
homologies for the topological characterization and early detection
of bifurcations,16,17 as well as the analysis of high dimensional data.18

Our methods can also contribute to the e�ective analysis of these
cases.

This paper is organized as follows. We use the time series data
from the systems considered at parameter values that show distinct
kinds of dynamical behaviors. To map these time series data sets into
their corresponding network representations, we employ the visibil-
ity algorithm,5 as explained in Sec. II. We de�ne the measures used
to analyze the simplicial structures of the resulting graphs and their
connection with the topological structure and topological connec-
tivity in Sec. III. The simplicial characterizers and the usual network
characterizers for the systems under study (the logistic map, the
Hénon map, the generalized Lozi map, and the Lorenz system) are
constructed and tabulated in Secs. IV and V. We summarize and
conclude in Sec. VII.

II. THE VISIBILITY GRAPH

In this paper, we use the visibility algorithm developed in Ref. 5
to transform the time series obtained from various dynamical sys-
tems evolving in di�erent dynamical regimes into a set of networks.
Recent developments show that going from the time series represen-
tation to the network representation yields additional information
of the underlying dynamics.6,19 While a number of methods have
been developed over recent years to convert a time series into a
network,4,6,20we use the visibility algorithm here due to the simplicity
of the visibility approach and its computational e�ciency. Addition-
ally, a TS network resulting from the visibility algorithmpreserves the
structure of the time series, viz., a periodic time series gives rise to a
regular graph, a random time series gives rise to a random graph, and
a fractal time series gives rise to a scale-free graph.5 We note that the
visibility algorithm has been used in diverse contexts ranging from
�nance21 to geophysics.22

The visibility algorithm introduced in Ref. 5 is implemented as
follows. Given a time series, visibility graphs are constructed by con-
sidering time data points as nodes, and a link is established between
any two nodes if and only if there is no obstruction in the line of sight
of these twonodes. Let the pair of points (yi, ti) denotes the data in the
time series for i = 1, 2, . . .N. For any two pairs (yi, ti) and (yj, tj) to be
visible to each other (by line of sight visibility), all other intermediate
data pairs (yr , tr) should satisfy the condition,

yj > yr +
yj − yi

tj − ti
(tj − tr) (1)

(see Fig. 1 for a graphical representation of the algorithm).
We use the visibility algorithm to construct the TS network

graphs for time series obtained from di�erent dynamical regimes of
the logisticmap and other evolving dynamical systems. Network rep-
resentations of the time series can be seen in Ref. 19 but have not
been further analyzed by quantitative methods. We use the meth-
ods of algebraic topology to construct a set of characterizers, which
can be used to analyze these TS networks. Since the dynamical sys-
tems that contribute to the time series are very well understood, the
TS networks studied here constitute good test beds for analyzing the
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FIG. 1. The visibility algorithm illustrated for period-4 (top panel) and chaotic
(bottom panel) time series, obtained from the logistic map at µ = 3.5 and
µ = 4.0, respectively, and their visibility connections.

e�ectiveness of the algebraic topology methods for the analysis of
dynamical regimes.

III. THE DEFINITIONS OF THE SIMPLICIAL

CHARACTERIZERS

Here, we study the topological structural properties of the net-
works generated by the visibility algorithm. The connectivity and
topological properties of the network graphs re�ect the connections
between the dynamical states of the system in time.14,23 The networks
so obtained are further classi�ed using the concepts of cliques and
simplices.24,25 We summarize these below.

In our context, a graph or a network represents a collection of
interacting nodes interconnected by links or edges.We de�ne a clique
to be a maximal complete subgraph; i.e., the nodes of a clique are not
part of a larger complete subgraph. Using the adjacency matrix of
the network, the Bron-Kerbosch algorithm24 is used to identify the
cliques. The cliques are regarded as the simplices of the graph.

A simplex with q + 1 nodes or vertices is a q-dimensional sim-
plex. For instance, a 0-simplex is an isolated point, a 1-simplex is
two vertices connected by a line segment, a 2-simplex is a triangle of
three connected nodes, a 3-simplex is a tetrahedronwith 4 connected
nodes, and so on. Furthermore, if two simplices have q + 1 nodes in
common, they share a q-face. A collection of simplices, which are
connected to each other—not just the nodes, but their shared faces
as well—form a simplicial complex. The dimension of the simpli-
cial complex is de�ned as the dimension of the largest simplex in the
structure. If we can �nd a sequence of simplices such that each suc-
cessive pair shares a q-face, then all the simplices in this sequence are
said to be q-connected. Simplices, which are q-connected, are also
connected at all lower levels.

In our study, we carry out the structural and connectivity
analysis of the TS networks obtained from the time series arising

out of di�erent dynamical regimes of maps and �ows of di�erent
dimensions, using six topological characterizers, both global and
local.12–14,23 Three of these quantities are well known and de�ned in
most algebraic topology texts,26 and three are new and have been
recently de�ned in the context of social and tra�c networks.15,23

The �rst characterizer is the vector Q, known as the �rst struc-
ture vector, which is a measure of the connectivity of the clique com-
plex at various levels. The qth component ofQ = {Q0,Q1, . . . ,Qqmax }

is the number of q-connected components at the qth level. The next

vector quantity, which we denote by f̃, is de�ned to have the number
of q-dimensional simplices as its qth component. The third quantity
Ns = {n0, n1, . . . , nqmax }, known as the second structure vector, has
the number of simplices of dimension q and higher as its qth com-
ponent. The fourth quantity is the third structure vector, Q̂, which is
de�ned in terms of the previously de�ned structure vectorsQ andNs.

Its qth component, Q̂q, is given by
(
1 −

Qq

nq

)
. A �fth quantity dimQi

is a local quantity, which de�nes the topological dimension of node i
of the simplicial complex, given by

dim Qi =

qmax∑

q=0

Qi
q, (2)

where qmax is the dimension of the simplicial complex andQi
k is

the number of distinct simplices of dimension k in which the node i
participates.

Finally, the topological entropy S is de�ned as

SQ(q) = −

∑
i p

i
qlogp

i
q

log Nq

. (3)

FIG. 2. The bifurcation diagram of the logistic map indicating eight parameter
values at which time series are obtained—periodic: µ = 3.5 and µ = 3.836
(red triangles), intermittent:µ = 3.8284 andµ = 3.857 (blue triangles), Feigen-
baum point: µ = 3.569 95 (yellow triangle), and chaotic: µ = 3.87, µ = 3.89,
and µ = 3.857 (green triangles).
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TABLE I. Structure vectors Q, Ns, and Q̂ for the logistic map TS networks. These TS networks are constructed from a time series of length 2000 (after discarding the first 5000

points) using the visibility algorithm.

Periodic Intermittent Feigenbaum Chaotic

µ 3.5 3.836 3.8284 3.857 3.569 95 3.87 3.89 4.0
q-level Period 4 Period 3 Before P3 Chaos 1 Chaos 2 Full chaos

Q 0 1 1 1 1 1 1 1 1
1 501 667 559 139 128 97 84 77
2 1498 666 842 1115 1871 1384 1386 1117
3 666 587 695 451 463 459
4 10 48 56 58 192
5 1 3 12 10 77
6 1 38
7 20
8 15
9 4

Ns 0 1499 667 853 1166 1872 1478 1489 1228
1 1499 667 853 1166 1872 1478 1489 1228
2 1498 666 851 1165 1871 1476 1488 1228
3 666 590 710 474 483 509
4 10 48 61 62 214
5 1 3 12 10 92
6 1 50
7 25
8 15
9 4

Q̂ 0 0.9993 0.9985 0.9988 0.9991 0.9995 0.9993 0.9993 0.9992
1 0.6658 0 0.3447 0.8808 0.9316 0.9344 0.9436 0.9373
2 0 0 0.0106 0.0429 0 0.0623 0.0685 0.0904
3 0 0.0051 0.0211 0.0485 0.0414 0.0982
4 0 0 0.0820 0.0645 0.1028
5 0 0 0 0 0.1630
6 0 0.24
7 0.2
8 0
9 0

Here, piq = Qi
q/

∑
i Q

i
q is the probability of a particular node i

participating in a q-simplex, and Nq = 6i

(
1 − δQi

q ,0

)
denotes the

number of nodes that participate in at least one q-simplex.
The TS network graphs are analyzed using these six simplicial

characterizers. The calculation is illustrated for a simple example in
the Appendix. The simplicial characterizers obtained for the actual
TS network graphs obtained from time series taken from the logis-
tic map, Hénon map, generalized Lozi map, and Lorenz system at
di�erent parameter values are discussed in Sec. IV–VI.

IV. SIMPLICIAL CHARACTERIZERS FOR THE

LOGISTIC MAP

In this section, our objective is to investigate the connection
between the topological structure arising out of the TS network
and the underlying dynamics of the evolving system, in this case

the logistic map, which is de�ned by xn+1 = µxn(1 − xn), for the
full spectrum of dynamical behavior that it shows, namely, periodic,
intermittent, and chaotic.

We are interested in identifying the signature of speci�c dynami-
cal behaviors of the evolving system in the topological characterizers
of the respective networks. The time series of the logistic map has
been obtained at eight distinct values of parameters, where distinct
classes of dynamical behavior are seen. These parameter values have
been indicated in the bifurcation diagram in Fig. 2 and include
representative samples, from the periodic, intermittent, and chaotic
regimes of the logistic map and also at the edge of chaos. The six
simplicial characterizers de�ned above have been calculated for the
TS networks obtained using the time series data for t = 2000 time
steps, after discarding the initial 5000 transients. Therefore, the TS
networks have N = 2000 nodes. The visibility condition [given in

Eq. (1)] has been implemented with a tolerance of ε = 10−4.
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TABLE II. The topological response function f̃ and the topological entropy S for the logistic map TS networks. These TS networks are constructed from a time series of length

2000 (after discarding the first 5000 points) using the visibility algorithm.

Periodic Intermittent Feigenbaum Chaotic

µ 3.5 3.836 3.8284 3.857 3.569 95 3.87 3.89 4.0
q-level Period 4 Period 3 Before P3 Chaos 1 Chaos 2 Full chaos

f̃ 0 0 0 0 0 0 0 0 0
1 1 1 2 1 1 2 1 0
2 1498 0 261 455 1871 1002 1005 719
3 666 580 662 413 421 295
4 9 45 49 52 122
5 1 3 12 9 42
6 1 25
7 10
8 11
9 4

S 0 0 0 0 0 0 0 0 0
1 1 1 0.9464 1 1 1 1 0
2 0.9774 0 0.9697 0.9752 0.9620 0.9779 0.9765 0.9742
3 0.9923 0.9919 0.9838 0.9783 0.9766 0.9786
4 0.9763 0.9806 0.9824 0.9848 0.9869
5 1 1 0.9707 0.9731 0.9912
6 1 0.9930
7 0.9758
8 0.9938
9 1

The dynamical regimes are

1. The periodic regime: This was studied at two parameter val-
ues, viz., µ = 3.5 (period-4 behavior) and µ = 3.836 (period-3
window).

2. The edge of chaos: µ = 3.569 95 (Feigenbaum point, period-2
cascade ends here).

3. Intermittency: For this, we studied the values µ = 3.8284 (the
onset of crisis induced intermittency) and µ = 3.857 (postcrisis
induced intermittency).

4. The chaotic dynamical regimes are µ = 3.87 (chaos), µ = 3.89
(chaos), and µ = 4.0 (fully developed chaos).

As mentioned above, the time series data at these parameter val-
ues are transformed to networks using the visibility algorithm, and
the clique structure of the resulting network is extracted using the
Bron-Kerbosch algorithm.24 Furthermore, the six topological quan-
tities are calculated for these networks. The results of the analysis are
presented in Tables I–III. Two central aspects of the network charac-
terizers quanti�ed by the six quantities are topological structure and
topological connectivity.

1. The topological connectivity between the simplices at each
topology level is identi�ed by the simplicial characterizerQ. The
vector Q measures the number of connected components (i.e.,
simplicial complexes) of the network at each topology level—for
q = 0 (at least one vertex in common), q = 1 (at least two ver-
tices in common), q = 2 (at least three vertices in common),

etc. To understand this, consider period 4 (µ = 3.5), for which
Q = [1, 501, 1498]. Here, Q0 counts the number of components
that are 0-connected. For the period-4 example, Q0 = 1, which
means that all simplices in the network have at least one node in
common with each other. From Table I, we observe that for all
theµ values considered, at the lowest topology level (q = 0), the
components of Q have a value of 1, con�rming that there is no
isolated node in the network, in any of the dynamical regimes.

Second, the second element Q1 counts the number of com-
ponents made up of simplices that have at least two nodes in
common; i.e., components that are 1-connected. We see from

TABLE III. The maximum value of the topological dimension of all nodes in the TS

network of the logistic map at the parameter values indicated in the table. The time

series considered is of length 2000.

µ Nature of orbit max(dim Qi)

3.5 Period 4 4
3.836 Period 3 2
3.569 95 Feigenbaum point 8
3.828 4 Intermittency before P3 8
3.857 Intermittency 12
3.87 Chaos 1 13
3.89 Chaos 2 13
4 Full chaos 12
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Table I that for period-4, Q1 = 501, i.e., there are 501 simpli-
cial complexes that are individually made up of simplices that
have at least two nodes in common. In other words, there are
501 1-connected components for the period-4 trajectory.

Next, the third element Q2 counts the number of compo-
nentsmade up of simplices that have at least 3 nodes in common,
i.e., that are 2-connected. For period-4, Q2 = 1498. This means
that there are 1498 components that are made up of simplices
that have 3 nodes in common with each other. Note that in this
case, qmax = 2, which means that the highest dimension of sim-
plex in the structure is 2. This implies that the largest simplex
in the structure is a triangle. So, Q2 = 1498 simply counts the
number of disconnected triangles in the network. We note that
all the periodic regimes, including the Feigenbaum point, have
contributions to the components ofQ only up to q = 2 or q = 3,
indicating that in all the periodic regimes of the logistic map,
the largest simplicial structure is a triangle or a tetrahedron,
and the connections range from3-connections to 0-connections.
The more complex dynamical regimes, viz., the intermittent and
chaotic regimes, have more complex structures. The intermit-
tent regimes (see Table I) have tetrahedral, pentahedral, and
hexahedral structures and connections up to the 5-connection
level. The chaotic regime has simplicial structures all the way
up to the 10-dimensional simplex level and connections up to
the 9-connection levels. This has been veri�ed for both the
2000 and 10 000 point time series, with the visibility condition
implemented to a tolerance of ε = 10−4.

We also compare the simplicial characterizerQ for the inter-
mittent value (µ = 3.8284) and the chaotic values
µ = 3.87 and 3.89 in Table I. The number of simplices at the
chaotic value increases much more sharply at the q = 2 level,
before they decrease, as compared to the intermittent case where
the number of connected components at each level changes
much more gradually. We note that at µ = 3.87, we see contri-
butions up to the q = 5 level and the q = 6 level for µ = 3.89,
whereas at µ = 4.0, where fully developed chaos is seen, the
contributions continue to the q = 9 level (see Table I).

2. The second structure vectorNs is a running index, which counts
the number of connected components at level q and above; i.e., it

is a cumulative index for f̃. It, therefore, contains the same infor-
mation as seen in f̃ at the q = 9 level, for the chaotic regimes.
Again, the periodic and chaotic regimes show completely dis-
tinct behavior, with contributions for the periodic regime and
the Feigenbaum point, being con�ned to the �rst three q-levels,
whereas the µ = 4 case sees contributions up to the q = 9 level.
The intermittent case (µ = 3.8284) and the value µ = 3.89 in
the chaotic regime again re�ect the di�erence seen in the case of
the �rst structure vector.

3. The components of the third structure vector, Q̂, are de�ned in

terms of the extent to which the ratio
Qq

nq
di�ers from 1. This

quantity thus lies between zero and one. Here again, there is a
sharp di�erence between the periodic and chaotic cases and the
intermittency atµ = 3.8284 and the chaotic valueµ = 3.87 and
µ = 3.89.

4. The vector f̃ quanti�es most directly the topological structure
of the network. This vector counts the number of simplices at

each topological level and functions like a response function. As
noted earlier, we see that the periodic regimes show behavior
quite distinct from the chaotic regimes. In the periodic regimes,

the response function f̃ increases sharply with level so that most
of the simplices are at the topmost level, whereas in the chaotic
regimes, the response function peaks sharply at the third level
(q = 2) and then decreases gradually so that the plot has a long
tail, extending up to q = 9.
The di�erences between the intermittent value at µ = 3.8284
and the chaotic values µ = 3.87 and 3.89 also show up clearly in
Table II.We see a clear shift in the level at which the highest value
of the number of simplices occurs. There are some contributions
now at the q = 6 and q = 7 levels for these cases, as compared to
the µ = 4.0 case, which has contributions until the q = 9 levels.
Thus, the case of fully developed chaos is clearly di�erentiated
from the others, by its long tail, as seen for the Q vector above.
These features can also be seen in Fig. 3.

5. The topological entropy S(q) is a measure of the complexity of
the network as well. This is shown in Table II. The entropies of
the periodic states and the edge of chaos contribute up to the
q = 2 levels, whereas the fully developed chaos state shows con-
tributions until the q = 9 level. The intermittent cases and the
chaotic cases show small �uctuations relative to each other at the
di�erent levels, with contributions up to the q = 6 and 7 levels.

6. The quantity max(dim)Qi gives the maximum value of the topo-
logical dimension of all the nodes in the network. (Refer to
Table III for the 2000 node TS network.) This picks the changes
in the dynamic regimes most strongly.

We see a clear distinction between the periodic states and the
intermittent and chaotic states in this case. For the periodic states,
the node in the network, which participates in the most number of
simplices, participates in a very few simplices, the values being 4 and
2, for the period 3 and period 4 values. At the edge of chaos, viz.,
µ = 3.569 95, there is at least one node that participates in 8
simplices.27 A higher value, viz., 13, is seen in the intermittent
regime.28 At µ = 4.0, viz., fully developed chaos, there is a node that
participates in as many as 12 simplices.29 Thus, there are many more
interconnections in the chaotic regimes compared to the periodic
ones.

The values of the topological characterizers in Tables I–III are
for a 2000 node network obtained out of a time series evolving from a
single initial condition. The same qualitative features are observed for
simplicial characterizers for longer time series of 10 000 points. This
can be further supported by examining the behavior of the normal-

ized quantities. If we plot the normalizedQ and f̃ values as functions
of the q-level for time series of lengths 500, 2000, and 10 000 points,
we see that these plots not only follow the same trends, but also col-
lapse on top of each other. For the periodic regime, the collapse is
perfect, as is expected. In the case of the intermittent and chaotic
regimes, the value of qmax increases with the length of the time series,
as is also expected, but the same qualitative behavior is seen (see
Fig. 3).

A. max (dim)Q i and the Lyapunov exponent

The max(dim)Qi, i.e., the dimension of the node that partic-
ipates in the largest number of simplices of any dimension, is a
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FIG. 3. Plots of the normalized simpli-

cial characterizers Q (left panel) and f̃
(right panel) for the logistic map, for the
Feigenbaum point (µ = 3.569 95), inter-
mittency (µ = 3.8284), and full chaos
(µ = 4) cases, for TS networks of 500
(blue square), 2000 (orange downward
triangle), and 10 000 (green upward tri-
angle) sizes. Here, NQ =

∑
q Qq and

Nsim =
∑

q f̃q.

measure of the complexity of the correlations in the time series at
that value of the parameter µ. It is interesting to compare its behav-
ior with the Lyapunov exponent, which is a measure of the chaoticity,
as encoded by the rate of divergence of two neighboring trajectories
at the given value of the parameter. Figure 4 plots the max(dim)Qi as
a function of the parameterµ for the parameter range 3.5 ≤ µ ≤ 4.0,
as well as the Lyapunov exponent vs µ for the same range. Here, we
plot the average value of max(dim)Qi for 20 distinct initial condi-
tions at eachµ value (in black), along with the standard deviation, in
gray.

It is instructive to compare the behavior of themax(dim)Qi with
that of the Lyapunov exponent in di�erent parameter regimes. In the
period doubling regime, we �rst note that the max(dim)Qi is a con-
stant across the window of each period and jumps at each period
doubling bifurcation, indicating the change in the network connec-
tivity that re�ects each period. It is also the same for all the initial
conditions, in the stable regime of the period. Since the TS network
corresponding to each period repeats its characteristic pattern, the
max(dim)Qi is also characteristic of each period and shows increas-
ing values with increasing period. In contrast, the Lyapunov expo-
nent in the periodic regime shows negative values, which decrease
with the increase in the stability of the period, with the exponent
value decreasing to−∞ at the location of the superstable orbit. As the
period becomes unstable, the Lyapunov exponent value touches zero.
Thus, the Lyapunov exponent and the max(dim)Qi contain comple-
mentary information. The max(dim)Qi contains information about
the structure of the periodic trajectory and the Lyapunov exponent
about its stability. Again, both quantities are useful for detecting the
bifurcation boundary at the edge of its period.

These properties of the max(dim)Qi can be observed for the
entire period doubling cascade, which accumulates at the Feigen-
baum point at µ = 3.56995 . . .. Beyond this point, the fact that the
trajectories have now crossed into the chaotic regime is re�ected by
a jump to a higher value of max(dim)Qi. The value of max(dim)Qi

is now much more sensitive to initial conditions, as is expected in
the chaotic regime, and the average value, therefore, �uctuates much
more as a function of parameter µ. The existence of periodic win-
dows in the chaotic regime is signaled by a corresponding drop in
the values ofmax(dim)Qi, at the appropriate values ofµ.We note that
the average value of max(dim)Qi �uctuates in a narrow band in the
entire chaotic regime, similar to the behavior of the Lyapunov expo-
nent. The increased sensitivity to initial conditions is also seen at the
point of intermittency, indicating the presence of strong �uctuations.

We note that while the Lyapunov exponent is a time averaged
quantity, the max(dim)Qi is, in contrast, a local measure. As men-
tioned above, the max(dim)Qi can be used as a complementary
quantity in addition to the global measures to gain insights on the
dynamical nature and transitions that arise in the analysis of time
series. So far, we discussed the results of the six topological char-
acterizers that were used to analyze the time series networks for
various dynamical regimes of the logistic map. We shall now sub-
ject these dynamical regimes to a more standard analysis using the
conventional complex network characterizers in Sec. IV B.

B. Using conventional network characterizers

In this section, we employ three of the widely used conven-
tional complex network characterizers, viz., the average clustering
coe�cient c and the characteristic path length l,10,30 to carry out
the standard analysis of the network properties of the TS networks
obtained from the logistic map time series for di�erent dynamical
regimes. We use the same time series data as used for the simplicial
characterization, viz., the logistic map time series for 2000 time steps
after discarding 5000 initial transients and the resultant TS network
of 2000 nodes. The standard network characterizers are de�ned in
Secs. IV B 1–IV B 3. We �rst examine these characterizers separately
and then examine them together.
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FIG. 4. The average maximum topological dimension max(dim)Qi (in black) for logistic map TS networks as a function of parameter µ (averaged over 20 initial conditions)
and its standard deviation (in gray), along with the Lyapunov exponent (in red). The bifurcation diagram is replicated on top for easy reference.

1. Clustering coefficient

First, the average clustering coe�cient c of a network measures
the extent to which a network is interconnected, i.e., to what extent
are the neighbors of a given node neighbors of each other. If a node
i is connected to k other nodes, then the clustering coe�cient ci of
the node i is de�ned as the ratio of the actual number of connections
that exist between the k nodes to the maximum number of intercon-
nections that can exist between the k nodes. If the actual number of
interconnections that exist between k nodes that are linked to the
node i is given by Ei, then the maximum number of interconnections
possible between the k nodes is simplyCk

2, which is k(k − 1)/2. Thus,
the clustering coe�cient of node i is de�ned as ci = 2Ei/k(k − 1).

We �rst examine the clustering coe�cient c for TS networks of
di�erent dynamic regimes. In Table IV, the second column lists the
clustering coe�cient spanning over the entire range of values of µ.
We see that these values of c that correspond to di�erent dynami-
cal regimes—periodic, intermittent, and chaotic dynamics—all fall
in a narrow range, 0.6913 < c < 0.7858. Each period has a network
characteristic of its own period. The clustering coe�cients for di�er-
ent periods, however, di�er by very small values. For high periods,
the tolerance to which the visibility condition is evaluated also plays
a role. The values for intermittent and chaotic regimes do not fall
within distinct ranges. Thus, the clustering coe�cient c is neither able
to distinguish between distinct dynamic regimes nor is able to club
together similar regimes.

2. Characteristic path length

The second characterizer that we look at is the average path
length l of the TS network (see Table IV), i.e., the average distance
between arbitrarily chosen points. Here, the average path length l
takes larger values in periodic regimes (i.e., atµ = 3.5 and 3.836) and

at the edge of chaos (Feigenbaum point, µ = 3.569 95) than that at
theµ values corresponding to intermittency (µ = 3.8284 and 3.857).
Small values of the average path lengths are seen at the chaotic val-
ues µ = 3.87 and µ = 3.89 and at the fully developed chaos value
µ = 4.0. The reason for the existence of large path lengths in the
periodic regime is clear. The periodic networks have simplices that
connect among near neighbors, and many short steps are necessary
to connect points, which are far apart on the time series. In terms of
the simplicial analysis above, the network structures corresponding
to periodic orbits have a signi�cantly large number of regular sim-
plices that are connected at lower topological levels. For instance,
for µ = 3.5 and µ = 3.836, the �rst structure factor Q has a large
component at the q = 1 level, Q1 = 501 and Q1 = 667, respectively.

TABLE IV. The conventional characterizers—the clustering coefficient (c) and the

average path length (L)—for parameters of the logistic map corresponding to various

dynamical regimes. In generating the TS network, we discarded 5000 initial transients

and used 2000 time steps in the time series; as a result; the TS network has nodes

N = 2000. Calculations of these characterizers were made using NetworkX, a Python

language package for network analysis.

µ c L λ Nature of orbit

3.5 0.6913 167.9995 −0.8725 Period 4
3.836 0.7998 222.9999 −0.2306 Period 3
3.569 95 0.6932 44.2464 0.0050 Feigenbaum point
3.828 4 0.7811 193.5178 0.1109 Intermittency before P3
3.857 0.7760 46.4710 0.2766 Intermittency
3.87 0.7317 34.0742 0.4265 Chaos 1
3.89 0.7320 29.1327 0.4982 Chaos 2
4 0.7858 27.4089 0.6931 Full chaos
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Thismeans that the resultant network is sparsely interconnected, and
its average path length is large.

On the other hand, for the intermittent and chaotic cases, the
corresponding TS networks contain links that connect points, which
are widely separated on the network. These long range links imply
that widely separated nodes can be reached in far fewer steps, lead-
ing to short average path lengths. In the simplicial language, the
chaotic TS networks have a large number of regular simplices, which
are rather sparsely connected at a lower topological level (q = 1 and
q = 2) but are better connected at a higher topological level (q = 2
and higher). The resulting network, therefore, is an overall better
interconnected network giving rise to a signi�cantly low average path
length.

It is interesting to speculate whether there are any regimes,
which have a small world connectivity, e.g., at the Feigenbaum point
or the edge of chaos. However, the present data do not permit any
de�nite conclusion. This question will be examined elsewhere.

3. Degree distributions

The cumulative degree distributions of the TS networks
obtained at the µ values of interest are plotted in Fig. 5. It is clear
that the periodic networks have many nodes whose interconnec-
tions follow identical patterns, and hence, there are only a �nite
number of degrees. This can be seen for µ = 3.450 (period 4) and
µ = 3.828 43, the onset of period 3. The degree distribution starts
showing a bigger variation, over one decade, at the onset of chaos
(µ = 3.569 95). This expands further atµ = 3.857 00, at the onset of
crisis induced intermittency, and even more so at the chaotic value
µ = 3.880 00 and µ = 4.0, i.e., at fully developed chaos. The log-log
plots of these distributions show short regimes where a power-law
can be �tted. However, even the 10 000 node networks do not really
show scale-free behavior.

We note that unlike the usual characterizers, our simplicial
description is capable of identifying network motifs and is in fact
more general than what is provided by network motifs, since it can
identify the ways in which the network motifs are put together, the
regularity with which they occur, and also motifs at di�erent levels
of topological complexity. We hope to discuss this in more detail in
future work.

V. SIMPLICIAL CHARACTERIZERS FOR HIGHER

DIMENSIONAL SYSTEMS

We have thus seen that the simplicial characterizers are able to
capture the distinct behavior seen in di�erent dynamical regimes of
the logistic map and are able to capture the contribution of the cor-
relations in the system. This is particularly important in the chaotic
regime where the correlations are short term, and their contribution
is di�cult to characterize using the usual characterizers. We have
also carried out a detailed comparison of the simplicial character-
izer max(dim)Qi with the Lyapunov exponent. Similar analysis can
be carried out for any other 1-dimensional system and will yield a
similar distinction between dynamical regimes.

It is now interesting to see if the simplicial characterizers can
distinguish between the dynamical regimes of high dimensional sys-
tems, maps as well as �ows. For this, we study two maps, the Hénon

map (2-dimensional), and the generalized Lozimap (3-dimensional),
as well as the Lorenz �ow. Here, the 2-dimensional Hénon map pos-
sesses both periodic and chaotic regimes, and the 2-dimensional
and 3-dimensional Lozi maps demonstrate chaotic and hyperchaotic
behavior. We note that the simplicial characterizers carry distinct
signatures of these dynamical behaviors. We undertake a similar
exercise in the Lorenz system to demonstrate that the simplicial char-
acterizers can distinguish between periodic and chaotic dynamical
cases.

A. Hénon map

We �rst consider the Hénon map31 de�ned by the equations

xn+1 = 1 − ax2n + yn,

yn+1 = bxn. (4)

We consider the dynamics of this system for two parameter sets,
for the values a = 1.05; b = 0.3, where the system displays periodic
behavior with a period-8 orbit, and for a = 1.4; b = 0.3, where the
system displays chaotic behavior. We have calculated the full set of
simplicial characterizers for both these cases.

As might be expected, the periodic case shows a very simple
structure. For the period-8 case, all the characterizers only con-
tribute up to the q = 2 level (see Fig. 7). Most prominently, the

f̃-vector, which counts the number of simplices at each level, only has
contributions at the q = 2 level (triangles), for the period-8 case.

In contrast, the chaotic case shows that all the characterizers
contain contributions up to the q = 5 level indicating far more com-

plex structures. Here, the f̃-vector has contributions up to the q = 5
level for the chaotic case, indicating the presence of simplices, which
are triangles, tetrahedrons, and pentagons. These re�ect the hierar-
chy of short term correlations in the system (see Fig. 8). We note that
the number of connected components peaks at the q = 2 level, in
both cases, but a substantial number of more complicated structures
are seen in the chaotic case. This is re�ected in the second and third
structure vectors as well as the entropy S.

The �nal characterizer, the max(dim)Qi, assigns a compact
numerical value to the complexity. We saw that in the case of the
logistic map, max(dim)Qi plotted as a function of the map parame-
ter µ proved to be an e�ective characterizer of dynamical regimes,
similar to the plot of the conventional Lyapunov exponent vs µ.
Here, for the Hénon map, we plot the value of max(dim)Qi for
b = 0.3 for values of a ranging from 1.0 to 1.3 in Fig. 6. The Lya-
punov exponent for the same set of parameters is plotted on the same
graph, and the bifurcation diagram of the system for the variable x
is also plotted in Fig. 6 in the top panel. We observe again that the
max(dim)Qi picks up the same set of features here, as it does for the
logistic map, viz., max(dim)Qi is a constant across the window of
each period and jumps at each period doubling bifurcation, with a
value that is characteristic of each period, and is stable to initial con-
ditions in the periodic regime. In the chaotic regime, max(dim)Qi

jumps to higher values, indicating the increase in the complexity of
correlations, and is much more sensitive to initial conditions, lead-
ing to larger �uctuations in the average value. Like the Lyapunov
exponent, it also picks up successfully the periodic windows in the
chaotic regime, as in the logistic map case, via a corresponding drop
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(a) (b) (c)

FIG. 5. Cumulative degree distributions for logistic map TS networks at (a) µ = 3.569 95 (Feigenbaum point), (b) µ = 3.857 (intermittency), and (c) µ = 4.0 (full chaos).
Length of TS = 2000.

in its value at the appropriate values of the parameter a. We note
here that the period doubling bifurcations, as well as the periodic
windows in the chaotic regimes are picked up as accurately by the
max(dim)Qi as by the Lyapunov exponent. Here, again, it remains
complementary to the Lyapunov exponent, as it picks up the structure
of the period over the entire stability interval, whereas the Lya-
punov exponent quanti�es the stability of the period over the stability
interval.

We note that in this as well as all subsequent cases, the time
series considered is of length 2000 after discarding the transients of
length 5000, unless otherwise stated. The network constructed here
is constructed out of the time series for the x variable, using the vis-
ibility algorithm. The network constructed using the y variable gives
similar results. Section V B discusses the comparison between chaos
and hyperchaos using the generalized Lozi map.

B. The generalized Lozi map

To see the di�erences between chaotic and hyperchaotic behav-
ior, we examine the generalized d-dimensional Lozi map32 de�ned by
the equations,

x1n+1 = 1 − a|xkn| + (1 − ν)xdn,

x2n+1 = x1n,

...

xdn+1 = xd−1
n , (5)

where the superscript represents the variable index and the sub-
script represents the time index, with the constraint k < d from the
de�nition. This is a piecewise linear map, and parameters a and ν

FIG. 6. The average maximum topological dimension max(dim)Qi (in black) for Hénon map TS networks as a function of the parameter a (averaged over 20 initial conditions)
and its standard deviation (in gray), along with the Lyapunov exponent (in red) and the bifurcation diagram (in blue).
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FIG. 7. Plots of the simplicial characterizers Q, Ns, and Q̂ for the Hénon map for
the period-8 case, i.e., at the parameter values a = 1.05 and b = 0.3 (blue) and
for the chaotic case at the values a = 1.4 and b = 0.3 (green).

control, respectively, the nonlinearity and dissipation of the system.
We focus on the three-dimensional Lozi map (with d = 3, k = 2)
that displays hyperchaotic dynamical behavior at certain parameter
values. The dynamical equations for this map are as follows:

x1n+1 = 1 − a|x2n| + (1 − ν)x3n,

x2n+1 = x1n,

x3n+1 = x2n. (6)

Chaotic behavior is seen at parameter values (a, ν) = (0.75,
1.75), and at the values (a, ν) = (1.3, 0.6), we see hyperchaos.

There are very distinct di�erences between the simplicial char-
acterizers of the chaotic and hyperchaotic cases. The number of

simplices at level q, i.e., the f̃-vector peaks at q = 2 for the chaotic
case, whereas it peaks at q = 3 for the hyperchaotic case (see Fig. 9).
Thus, the dominant simplices are triangles in the chaotic case (as in
the case of the chaotic Lozi map) and tetrahedra in the hyperchaotic
case. The Q-vector, which counts the number of connected com-
ponents at the qth level, also contains signi�cant information. The
chaotic case shows a sharp increase in Q at the q = 2 level (1070 2-
connected simplicial complexes) so that most connections between
simplices in the chaotic case are links, whereas in the hyperchaotic
case, they are at q = 3 (1012 3-connected simplicial complexes); i.e.,
most connections between simplices are 2-faces or triangles. In both
cases, there are signi�cant contributions at the 2, 3, and 4 levels. How-

FIG. 8. Plots of the simplicial characterizers f̃ for the Hénon map for the period-8
case, i.e., at the parameter values a = 1.05, b = 0.3 (blue), and for the chaotic
case at the values a = 1.4, b = 0.3 (green).

ever, there are nonzero contributions up to level q = 6 for the chaotic
case and q = 7 for the hyperchaotic case, contributing to a long tail
as in the earlier examples.

As before, the most direct indication of complex correlations
comes from the quantity the max(dim)Qi (see Table V). We see
that the max(dim)Qi is signi�cantly higher in the hyperchaotic case
(23.0 ± 2.5) compared to the chaotic case (14.65 ± 1.63). Here, an
average is taken over 20 initial conditions. The highest and lowest
values observed for the max(dim)Qi for this set of initial conditions
are 13 and 18 for the chaotic case and 17 and 27 for the hyperchaotic
case.

We also carry out a comparison of the standard net-
work characterizers for the TS networks obtained for the peri-
odic (Hénon), chaotic (Hénon, generalized Lozi), and the hyper-
chaotic cases (generalized Lozi) in Table V. As in the logistic
map case, the clustering coe�cient does not clearly di�erenti-
ate between the dynamical regimes; however, the path lengths
shorten with increase in the complexity of the network. Thus,
long path lengths are seen for the periodic case (Hénon) and
short path lengths are seen for the chaotic and hyperchaotic cases,
with the shortest path lengths being seen for the hyperchaotic
case.

Our next case is that of a �ow, viz., the Lorenz system.
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TABLE V. Standard network characterizers, Lyapunov exponents, and max(dim)Qi for the Hénon map and generalized Lozi map.

Parameters Dynamical regime c L Lyapunov exponents max(dim)Qi

Hénon map
a= 1.05, Period-8 0.6931± 0.0001 85.2483± 0.0007 (−0.0125, −1.191) 6± 0
b= 0.3
a= 1.4, Chaos 0.733± 0.002 13.7± 1.6 (0.416, −1.620) 14.95± 0.89
b= 0.3
Generalized Lozi map
a= 0.75, Chaos 0.732± 0.001 9.90± 1.10 (0.069, −0.160, −0.197) 14.65± 1.63
ν = 1.75
a= 1.3, Hyperchaos 0.748± 0.001 6.92± 0.47 (0.142, 0.123, −1.181) 23.0± 2.5
ν = 0.6

C. Lorenz system

The evolution equations for the well known Lorenz system are

ẋ = σ(y − x),

ẏ = x(ρ − z) − y,

ż = xy − βz, (7)

where σ , ρ, and β are parameters of the system.
We study the Lorenz system at two sets of parameter values,

σ = 10, b = 8/3, and r = 160 where periodic behavior is seen and

FIG. 9. Simplicial characterizer plots for the generalized Lozi map for a chaotic
orbit, i.e., a = 0.75, ν = 1.75 (blue), and a hyperchaotic orbit, i.e., a = 1.3, ν =

0.6 (green).

σ = 10, b = 8/3, and r = 60 where chaotic behavior is seen. This
time series is sampled at a delay time33 for which the mutual infor-
mation entropy has its �rst minimum.34 The x-variable of this �ow is
plotted in Fig. 10, where the time series of the Lorenz system with a
step size of δt = 0.005 (using the Runge-Kutta algorithm) and a sam-
pling interval obtained from the delay time technique 1t = 0.165.
It can be seen from Fig. 10 that the variations of the time series are
captured accurately by this sampling time.

The visibility graph of the system is constructed using this time
series, which yields a dense and closely packed visibility graph for
the chaotic case. The graphs for both the periodic and chaotic cases
are analyzed using our simplicial characterizers. As earlier, more
complex correlations and graphs are expected for the chaotic case.

The vector f̃ for the periodic case (σ = 10, b = 8/3, and r = 160)
peaks at level q = 2 (951 triangular simplices) and falls o� rapidly

up to q = 5 (28 simplices). In contrast, the f̃ for the chaotic case
(σ = 10, b = 8/3, and r = 60) peaks at a higher level q = 3 (455
tetrahedral simplices), has large contributions at the q = 4 level

t
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FIG. 10. The coarse grained time series (symbols) used for the visibility algorithm
from the Lorenz time series (small dots) for the x variable. For the coarse grain-
ing time interval, we adapt the time delay obtained from the first minimum of
the mutual information.34 Thus, the coarse graining intervals are τx = 21δt, with
δt = 0.005 s being interval size of the original time series. The resulting coarse
grained data (spanned by the symbols in the plot) are used to construct the
visibility graphs in order to extract the essential dynamical features of the system.
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FIG. 11. Plots of the simplicial characterizer f̃ for the Lorenz system for the peri-
odic case, i.e., at the parameter values σ = 10,β = 8/3, ρ = 160 (top), and for
the chaotic case at the values σ = 10,β = 8/3, ρ = 60 (bottom).

(357 pentagonal simplices) and q = 5 level (290 hexagonal simplices)
as well, and has nonzero contributions up to q = 9 (130 6-simplices,
62 7-simplices, and 6 9-simplices). This can be seen in Fig. 11. This
can be understood from the way in which the periodic and chaotic
trajectories are supported by the two-lobed butter�y attractor and the
structure of the corresponding graphs. The signature of higher com-
plexity can be seen for the other simplicial characterizers as well. For
the periodic case, theQ vector has a peak at the q = 2 level and con-
tributions up to q = 5. In contrast, for the chaotic case, the Q shows
its �rst peak at q = 3 with Q3 = 667 and falls o� gradually until the
level q = 9. This is re�ected in themax(dim)Qi values as well. For the
periodic case seen at r = 160, max(dim)Qi = 12, and for the chaotic
case at the value r = 60, max(dim)Qi = 30, which is well di�erenti-
ated andmuch higher than all the periodic cases. Thus, the simplicial
characterizers for the Lorenz �ows show the same trends as are seen
in the high dimensional maps.

VI. COMMENTS ON COMPUTATIONAL ISSUES

We note that the details of the TS networks show some sen-
sitivity to the accuracy of computation. For example, the visibility
condition is evaluated to some tolerance ε. This condition makes a
di�erence to the details of the network in some cases, particularly in
the case of the Feigenbaum attractor, and leads to small changes in
the values of the topological characterizers, especially the exact value
of max(dim Qi). Similarly, di�erent initial conditions also lead to
slightly di�erent values of the topological characterizers, and there-
fore, averages over initial conditions lead naturally to noninteger
values of the topological characterizers. We note, however, that the

changes are small, and the qualitative behavior of the topological
quantities as functions of the level q maintains the behavior that is
shown in the graphs, with each kind of behavior being characteristic
of the given dynamical regime.

The visibility graphs constructed here have been constructed
using the x variable time series, including the high dimensional cases,
viz., the Hénonmap, generalized Lozi map, and Lorenz �ow.We note
for the maps considered here, the other variables are scaled versions
of the x variable. Hence, the visibility graphs, which are invariant
under a�ne transformation of the series data,5 remain the same
if the time series variable is changed, and therefore, the simplicial
characterizers remain the same.

In the case of the Lorenz �ow, we have used the x-variable,
sampled at a delay time that corresponds to the minimum of the
mutual information entropy,2 to construct the time series graph, since
by Taken’s embedding theorem, the time delayed versions of one
generic variable are su�cient to embed the n-dimensional manifold.
We hope to explore the issue of embedding as well as other modes of
constructing networks in future work.

VII. CONCLUSION

To summarize, we examine the TS networks obtained from the
time series of the logistic map, Hénon map, generalized Lozi map,
and Lorenz system using algebraic topology methods. Our char-
acterizers are clearly able to distinguish between chaotic and peri-
odic regimes. Furthermore, these characterizers can also distinguish
between chaotic and hyperchaotic regimes. The simplicial structure
of time series networks associated with all these dynamical regimes
contains nodes, links, and triangular faces and also contains fully
connected clique complexes. The periodic regimes are characterized
by regular graphs, which contain simplices of smaller dimensions,
compared to the simplices in the chaotic time series networks.

While the dynamical stability of dynamical systems is well
understood, and quanti�ed nicely by the Lyapunov exponent, the
short term correlations of evolving systems, especially in the chaotic
regime, have not been quanti�ed to any great extent. The TS net-
works constructed by the visibility method encode these correlations
in terms of the connectivity of the network graphs. The simplicial
characterizers uncover the hidden geometry of these graphs, level by
simplicial level, by providing a precise quanti�cation of the manner
in which these graphs are connected, pointwise, linkwise, triangle-
wise, and higher. This is very clear from our tables, as well as from
the graphs. This is analogous to the manner in which the multifrac-
tal structure analyzes the scaling behavior of a multiscale set. To the
best of our knowledge, there is no analysis of the short term correla-
tions in an evolving system that does this, including entropic analysis.
The algebraic characterizers and their identi�cation of the hierarchy
of geometrical structures can also contribute to the identi�cation of
dominant network motifs in general complex networks.

We also note that our local topological quantity, viz., the max-
imum dimension that counts the number of simplices in which the
most highly connected node participates, is highly sensitive to the
dynamic nature of time series and quanti�es the strong increase in
the connectivity properties of the network seen at the edge of chaos,
in the chaotic regime, and the hyperchaotic regime, very accurately.
In the context of the logistic map and Hénon map, the maximum
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dimension plotted as a function of the map parameter µ provides
detailed insight into the changes in dynamical behavior and com-
plements the information available in the Lyapunov exponent. The
utility of the algebraic topological quanti�ers is thus demonstrated
in simple contexts where the dynamical behavior is well understood.

A comparison with the usual network characterizers is also nec-
essary here. The clustering coe�cient is much the same for all the
examples, in all the dynamic regimes. This indicates that the clique
formation in the distinct dynamic regimes is not signi�cantly di�er-
ent. However, the short path lengths on the network in the chaotic
and hyperchaotic regimes studied encode the fact that the connec-
tions formed here are long range connections on the network, as
opposed to the long path lengths (and short range connections) in
the periodic regime. It is interesting to note that for the logistic map,
the edge of chaos (the Feigenbaum point) and the chaotic regime
at the end of the period 3 window show path length values, which
are clearly separated from both these regimes. This small-world-like
behavior is in line with other observations, which indicate distinctly
di�erent behavior at the edge of chaos. This point deserves further
investigation and needs to be supplemented by further investigation
of the simplicial structure at the edge of chaos. A detailed comparison
of the level by level correlations in chaotic and hyperchaotic regimes
is also a further direction of study.

Thus, the algebraic topological characterizers of time series net-
works appear to be promising candidates for revealing the hidden
geometry of networks, which represent time series with nontrivial
correlations between dynamical states. We expect them to be partic-
ularly useful in situations, which exhibit phase transitions or other
signi�cant changes in the dynamics, such as jamming behavior and
unstable dimension variability. We note that our description is capa-
ble of identifying network motifs and is in fact more general than
what is provided by network motifs, since it can identify the ways
in which the network motifs are put together, the regularity with
which they occur, and also motifs at di�erent levels of topological
complexity. We hope our study will motivate future work in these
directions.
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APPENDIX: CALCULATION OF SIX CHARACTERIZERS

USING A SIMPLE EXAMPLE

Let us take the simplicial complex in Fig. 12 where two triangu-
lar simplices are connected by a link. The simplicial complex here has
three simplices, the third one being the simplex made of two nodes
with a single link between them. We shall now use this simplicial
complex to illustrate how the six characterizers are calculated.

The three simplices of the simplicial complex are denoted by
A = {1, 2, 3}, B = {2, 4}, and C = {4, 5, 6}, with the vertices labeled
as shown in Fig. 12. The incidence matrix 3 of the simplicial com-
plex can be written as amatrix with the simplex index as rows and the
node index as columns. If a node is contained in a simplex, then the
corresponding element in the matrix is 1 or else it is 0. We, therefore,

FIG. 12. An illustration to demonstrate connectivity between three simplices in a
simplicial complex. Two simplices A and C are of dimension q = 2, and the third
simplex B is of dimension q = 1. Simplices A andC are 0-connected to simplex B,
which means that each of them has a single vertex in common with B. We use this
example to illustrate the calculation of all the six characterizers in the Appendix.

have

3 =



1 1 1 0 0 0
0 1 0 1 0 0
0 0 0 1 1 1


.

Both the simplices A and C are of dimension 2, as they have
3 nodes each, and the simplex B has a dimension 1, because it
has 2 nodes. Note that if a simplex has q + 1 nodes, then it is of
dimension q.

Let us �rst calculate the �rst structure vectorQ for the simplicial
complex.

1. First structure vector Q

Let us consider the �rst structure vector Q for the simplicial
complex. Since the simplices A and B are with three nodes (their
dimension being 2), the structure vector Q will have three levels:
q = 0, q = 1, and q = 2. If two simplices are to be q-connected, they
should have at least q + 1 nodes in common, and also that if two
simplices are q-connected, then they are also connected at all lower
topological levels.

In our example, at the q = 0 level, for topological connectivity
between any two simplices, we need at least one node in common. By
this, we see both the pairsA andB as well asB andC are connected, as
they have one common node each, node-2 and node-4, respectively.
In fact, the whole simplicial complexmade up of three simplicesA,B,
and C is now identi�ed as one entity at the q = 0 topological level.

At the next level q = 1, for connectivity between two simplices,
we need at least two nodes to be in common. As we have none, all the
three simplices are disconnected from each other at this level. The
total number of entities is now three.

At the q = 2 level, none of the simplices are connected for it
requires a minimum of three nodes to be in common. In addition,
at the q = 2 level, only the simplices A and B with dimension 3
exist. Therefore, we see only two entities at this level. In all, the �rst
structure vector isQ = (1, 3, 2).

2. Second structure vector Ns

The second structure vector Ns is de�ned as follows. The qth
component of Ns is the number of simplices present in the simpli-
cial complex at level q and higher. At the level q = 0, we can see
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from Fig. 12 that the total number of simplices here is three, n0 = 3.
Next, at level q = 1, the number of simplices is again three, n1 = 3,
and at level q = 2, the number is two, n2 = 2. Therefore, the second
structure vector is Ns = (3, 3, 2).

3. Third structure vector Q̂

The qth component of the third structure vector Q̂ is given
by 1 − Qq/nq, where Qq and nq are the qth components of the �rst
and second structure vectors, respectively. Therefore, we can get
Q̂ = (2/3, 0, 0).

4. f̃ vector

Here, the qth component is the number of simplices at level-
q. At level q = 0, we have to count the number of simplices that are
isolated nodes. Our simplicial complex does not have any isolated

nodes; thus, f̃0 = 0. Therefore, at level q = 0, there are no simplices

that have one isolated node; as a result, f̃0 = 0.
At the next level q = 1, the only simplex to have two nodes is the

simplex B; thus, f̃1 = 2. For level q = 2, two simplices A and C have

three nodes each, and we have f̃2 = 2. We can now write the vector

as f̃ = (0, 1, 2).

5. Maximum topological dimension: max (dim)Q i

To �nd the maximum topological dimension of the simplicial
complex, we need to �nd the topological dimension Qi of all the
nodes. The topological dimension of a node i is the number of sim-
plices of dimension-q (the same as level-q) the node participates in.
For node-1, it takes part only in the simplex A, which is at level-2.
Therefore, the only nonzero component of the vectorQ1 is for level-
2,Q1 = (0, 0, 1). Similarly, node-2 participates in two simplices A, of
dimension 2, and B, of dimension-1. Therefore, the vector Q1 will
have nonzero contributions for levels-1 and 2, givingQ2 = (0, 1, 1).

Working out in a similar fashion, we will have the vectors
for the four other nodes in the simplicial complex as follows.
Q3 = (0, 0, 1),Q4 = (0, 1, 1),Q5 = (0, 0, 1), andQ6 = (0, 0, 1).

The topological dimensions that a node participates are then
the sum of the nonzero components of that node (row sum of
the vector Qi). We, therefore, have Q1 = 1,Q2 = 2,Q3 = 1,Q4 = 2,
Q5 = 1,Q6 = 1, among which the maximum dimensionality is seen
in nodesQ2 andQ4 with a value 2, which is the value of max(dim)Qi.

6. Entropy S

The entropy of a topological level-q is de�ned by

S(q) =
−

∑
i p

i
q log p

i
q

logNq

,

where piq is the occupation probability of a node at the level-q, given

by Qi
q/

∑
j Q

j
q. The quantity Nq =

∑
i (1 − δQi

q ,0
) is the number of

nodes that have a nonzero entry at the level-q in the simplicial com-
plex. The delta function in Nq will take the value of unity if the
subscript Qi

q = 0 or else it will be zero.
Now, the occupation probability pi is obtained from the topolog-

ical dimensionsQi
q (calculated above). At level q = 0,Qi

q is zero for all

the nodes; as a result, pi = 0 and entropy SQ(0) = 0. At level q = 1,
only nodes 2 and 4 contribute to the topological dimension. That is,
Q2

1 = 1 and Q4
1 = 1; all else are zero. The corresponding occupation

probabilities are p21 = 1/2 and p41 = 1/2. The entropy at level q = 1
is S(1) = 1.

Finally, at level q = 2, all the nodes contribute to the topolog-
ical dimension, Qi

2 = 1, which gives a value of pi2 = 1/6. Then, the
entropy at the level q = 2 is S(2) = 1.

The quantities de�ned here can now be computed for the actual
TS networks in a similar way.
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